
2.5D Cartoon Models

Alec Rivers
MIT CSAIL

Takeo Igarashi
The University of Tokyo

Frédo Durand
MIT CSAIL

(a) (b) (c)

Figure 1: A 2.5D Cartoon: We take vector art drawings of a cartoon from different views (a) and use them to automatically generate a 2.5D
cartoon (b), which associates each stroke with a 3D position. The 2.5D cartoon can then be used to simulate a rotation in 3D and generate a
rendering of the cartoon in a novel view (c).

Abstract

We present a way to bring cartoon objects and characters into the
third dimension, by giving them the ability to rotate and be viewed
from any angle. We show how 2D vector art drawings of a cartoon
from different views can be used to generate a novel structure, the
2.5D cartoon model, which can be used to simulate 3D rotations and
generate plausible renderings of the cartoon from any view. 2.5D
cartoon models are easier to create than a full 3D model, and retain
the 2D nature of hand-drawn vector art, supporting a wide range of
stylizations that need not correspond to any real 3D shape.

Keywords: non-photorealistic rendering, cartoons, vector art, bill-
boards, animation, interpolation

1 Introduction

The ability to rotate a cartoon and view it from any angle has wide-
ranging applications, both in aiding animation and in enabling car-
toon objects to be placed in an interactive 3D environment in which
the user controls the viewpoint. Previously, this has been achieved
by constructing a 3D model of the cartoon and rendering it in a
non-photorealistic way so as to resemble a cartoon. However, gen-
erating a 3D model is time-consuming, and many stylistic elements
of 2D drawings cannot be adequately reproduced in a 3D model,

as the 2D appearance intended may not correspond to any real 3D
shape.

We propose a way to use 2D vector art drawings of a cartoon from
different angles to generate a new type of structure, the 2.5D car-
toon model, visualized in Figure 1 (b). This structure associates
each stroke of a cartoon with a single 3D position, and is able to
generate plausible renderings of the cartoon in new views by trans-
lating the strokes’ positions in 3D, while interpolating their shapes
in 2D. We have found that this simple model structure allows sur-
prisingly believable rotations of cartoons, despite having no explicit
3D polygonal mesh of the object, and typically only requires three
or four defined views of the cartoon to be able to generate plausible
renderings of the cartoon in any orientation. The result is a cartoon
that retains the 2D, hand-drawn nature of the input vector art, while
supporting full 3D rotation.

2 Related Work

Cartoon-style drawing and animation have over time developed a
rich language of non-photorealistic stylizations (see, e.g., [John-
ston and Thomas 1981; Blair 1994]). Much work has been done
that seeks to introduce these stylizations to computer rendering (see
[Gooch and Gooch 2001] for a survey). Non-photorealistic render-
ing techniques have been proposed to make a 3D model resem-
ble a hand-drawn cartoon, such as cel-shaded lighting [Decaudin
1996] or exaggerated, 2D silhouettes [Northrup and Markosian
2000; Kalnins et al. 2002].

However, rendering from a single 3D model cannot account for car-
toons that have mutually inconsistent appearances in different views
– for example, no matter the viewing angle, Bugs Bunny’s ears are
always facing the camera. View-dependent geometry [Rademacher
1999] addresses this limitation by providing multiple different mod-
els of an object, each associated with a single perspective, and ren-
dering intermediate perspectives using a 3D model that is an in-
terpolation of the models for nearby orientations. This approach,
while more flexible, requires additional 3D modeling, and retains
the essential 3D nature and appearance of the model.Our approach,

(a) (b) (c)

Figure 2: 2.5D interpolation: Here we show a 2.5D model being rotated through (a) front, (b) oblique, and (c) side views. The arrangement
of strokes in 3D is illustrated at the left in each view, while the 2D rendering produced is shown at right. In this cartoon, the front (a) and side
(b) views were manually drawn by an artist, while the oblique view (b) was generated automatically by rotating the strokes’ anchor positions
(the green crosses) while interpolating the strokes’ 2D shapes.

by comparison, works entirely with 2D vector art.

Di Fiore et al. [2001] propose an approach in which a set of hand-
drawn views are interpolated to generate renderings at intermediate
views. In that approach, either a 3D skeleton must be manually cre-
ated by the artist, or Z-ordering must be manually specified at each
view. In the latter case, interpolation of shapes is simple linear inter-
polation. Our approach, by comparison, determines a 3D position
for each stroke, and does so automatically; these 3D positions are
then used both to translate the strokes along a nonlinear path and
to determine their Z-ordering in novel views. Our approach also
presents techniques for exploiting symmetries on the stroke level to
reduce the number of views that must be manually specified, allow-
ing the artist to easily construct models which can be fully rotated
about all axes.

Our method involves a combination of translating strokes’ posi-
tions based on inferred 3D positions while interpolating the strokes’
shapes in 2D. Several methods have been proposed for the inter-
polation of 2D shapes: Sederberg and Greenwood [1992] solved
the problem of vertex correspondence between two shapes by us-
ing a physically-based approach, in which strokes were likened to
lengths of wire and a dynamic programming algorithm was used to
minimize the amount of bending and stretching the wire undergoes
in blending between two shapes. Alexa et al. [2000] tackled the
problem of vertex paths, by formulating as-rigid-as-possible shape
interpolation, in which paths for vertices are found that keep the
volume of the interior of the stroke at intermediate points as rigid
as possible. Igarashi et al. [2005b] further introduced an as-rigid-
as-possible approach to interactive shape manipulation.

While these interpolation methods are purely 2D, Setz and Dyer
[1996] describe View Morphing, a form of 2D image interpolation
that can mimic 3D rotations between two views. However, View
Morphing’s approach involves warping images where correspond-
ing 2D points represent the same 3D point. In the case of cartoons,
strokes often represent silhouettes of a shape, and corresponding
2D points therefore often do not represent a single 3D point.

In our approach, we are interested in mapping vector art draw-
ings to different points in a 2D parameterization of the orientation
space, and generating plausible interpolations across that orienta-
tion space. In related work, Igarashi et al. [2005a] proposed map-
ping 2D vector art keyframes to positions in 3D, and allowing a
user to explore the space of possible interpolations by manipulating
a 3D point. The nearest keyframes to the 3D point are interpolated
and the result is presented to the user. Ngo et al. [2000] investigate
limiting the configuration space of interpolations between drawings
to the subset that generates plausible images. They present a way
for the user to manipulate the image to explore that subset of the
state space without explicit knowledge of how the state space is
laid out. Hsu and Lee [1994] introduced a new type of stroke for
vector art which, amongst other things, could map different stroke

lengths to different 2D drawings, which would be interpolated for
intermediate lengths.

Several techniques aim to blend the distinction between 2D and
3D drawings. Bourguignon et al. [2001] proposed an approach in
which 2D strokes are drawn onto a plane in a 3D scene. These
strokes are interpreted as indicating silhouettes or contours of 3D
objects, and correspondingly deform and fade into and out of vis-
ibility as the camera rotates around the scene. Yonezawa et al.
[2004] present a similar approach in which 2D strokes are again
embedded in 3D space, but in this case they represent silhouettes
of a shape and are explicitly associated with one another, so as
the camera rotates, just the appropriate silhouette can be displayed.
Our approach, by comparison, combines the defined silhouettes of
a stroke from multiple views using translation and interpolation to
generate a full silhouette in any view.

To generate a new view of a cartoon one must not only determine
strokes’ shapes, but also their Z-ordering. Recently, several tech-
niques have been proposed that seek to combine 2D drawings with
depth information. Sykora et al. [2010] present a new interface
to determine Z-ordering of the strokes in a cartoon using sparse
depth inequalities. McCann and Pollard [2009] demonstrate how
elements in a flat image can be layered with local layering con-
straints, rather than global ones, effectively allowing depths that
vary across the object. Reversing the challenge, Eisemann et al.
[2009] show how to automatically compose a 2D layered image
from an 3D scene. In our approach, we determine a 3D position
for each stroke, and use that to determine Z-ordering automatically
(though the suggested Z-ordering can be overridden by the artist if
desired).

Finally, a variety of sketch-based modeling approaches have been
proposed, which aim to generate explicit 3D models from 2D draw-
ings (e.g., [Zeleznik et al. 1996; Igarashi et al. 1999; Nealen et al.
2007; Gingold et al. 2009]). Our approach also uses 2D input
to generate models which can be rotated in 3D. However, instead
of generating a 3D polygonal mesh, we generate a 2.5D cartoon,
which can have inconsistent appearances in different views and nat-
urally supports a stylized drawing style.

3 Algorithm Overview

The goal of this paper is to produce a cartoon that can be rotated
and rendered in any view. We take as input just 2D drawings of a
cartoon in different views. We call the views which an artist has
manually specified “key views” (similar to keyframes in timeline
animation). The central challenge in our approach is to use these
key views to determine a reasonable appearance for the cartoon in
a novel view.

A naive approach would be to do simple 2D shape interpolation
across the key views for each stroke. However, simple 2D inter-

Figure 3: User interface: The main window resembles a tradi-
tional vector-art editing interface, while the view angle control, in
the lower left, parameterizes the orientation space and allows the
user to select a new view to edit. The view angle control also shows
existing key views for the selected stroke as red points.

polation is unable to capture the complex nature of the paths that
strokes follows in a 3D rotation. These paths curve, and strokes
proceed along them at varying speed. The Z-ordering of strokes
also changes during rotation, as some strokes rotate to the front and
others rotate to the back. Simple 2D interpolation ignores these ef-
fects, and is unable to produce convincing results for novel views.

Instead, we investigate the challenge of 2.5D interpolation: inter-
polating 2D drawings while respecting the implicit 3D structure un-
derlying the drawings to generate an interpolated view that resem-
bles a rotation to an intermediate viewpoint.

In determining the appearance of a stroke in a novel view, three
properties must be determined: the stroke’s shape, position, and
Z-ordering. The core realization of our approach is that these chal-
lenges can be separated, and tackled with different tools. A stroke’s
shape changes in complex ways when viewed as the shifting con-
tour of a 3D object, but can be approximated well by simple 2D
interpolation. Meanwhile, strokes’ positions and Z-ordering are es-
sentially 3D properties, and while they change in complex ways
when viewed in 2D, they can be easily modeled by the motion of a
single 3D point.

Therefore, we propose a hybrid structure: the 2.5D cartoon model,
which consists of 2D vector art strokes, each associated with a 3D
position, which we call the stroke’s anchor position. In general, this
structure can be conceptualized as a collection of billboards posi-
tioned in 3D space, with each billboard containing a single stroke
of the cartoon. To simulate a rotation between known key views,
the billboards’ positions are rotated in 3D about the origin, while
the vector art on the billboards is interpolated with simple 2D inter-
polation. Thus a stroke’s shape is determined by 2D interpolation
across its key views, while its position and Z-ordering are deter-
mined by its associated 3D anchor position. We show a rendering
of an exploded view of a 2.5D cartoon model in Figure 2.

In the next section, we will describe the user interface we use to
construct a 2.5D cartoon model. We will then describe the details

Yaw

Pi
tc
h

Figure 4: Parameterized orientation space: We parameterize the
space of possible views into yaw and pitch, ignoring tilt as it can be
accounted for with a screen-space rotation. In this cartoon, only
the views outlined in blue needed to be manually drawn by the
user. Green views were automatically created by mirroring individ-
ual strokes, while red views were automatically created by rotating
existing views.

of how 2.5D interpolation is achieved, and show how we can use
just three or four key views of a cartoon to generate a 2.5D cartoon
model that can be rotated to any view.

4 User Interface

Our user interface, shown in Figure 3, resembles a traditional
vector-art program. A user draws a cartoon using independent
strokes. Unlike a traditional vector-art program, the user can at
any time rotate the cartoon to edit a different view. When the user
selects a new view, the interface displays its best guess as what the
cartoon looks like in that view. The user can then select and redraw
some or all of the strokes of the cartoon to specify their appearance
in that view, creating new key views for the strokes.

Typically, an artist starts by drawing a cartoon in the front view,
and then selects and redraws the strokes in the side and top views.
Because a stroke must be selected before a new view for the stroke
can be defined, the association between a stroke’s appearances in
different views is explicit.

Because we leverage redundancies and symmetries across different
views of a stroke, just the top, front, and side views are usually
sufficient to generate plausible appearances for the cartoon in every
view. Once these views have been drawn, the artist typically spends
his or her time “browsing around” the orientation space, adjusting
strokes that look wrong in certain views. Unsatisfactory strokes
may be adjusted either by changing their existing key views, or by
redrawing them in a view in which they look wrong, adding a new
key view. Additionally, the artist may adjust the visibility or Z-
ordering of some strokes across different ranges of views; this can
be achieved using tools we describe below.

The artist can also easily animate a 2.5D cartoon model using a pro-
vided animation timeline. The artist can enter the desired number
of frames, select any frame, and redraw some or all of the strokes
in the model. The result is that each stroke accumulates {time, ori-
entation, shape} triples, which we can use to generate an animation
that can be rotated around in 3D.

Please see our accompanying video for a demonstration of our edit-
ing interface. In general, we have found that most users find it quite
easy to use our interface to create a 2.5D cartoon model. In terms of

time required, creating a 2.5D model is more involved than simply
creating three 2D drawings, but is much less time-consuming than
creating a 3D model.

We will now describe some of the tools in our interface in more
detail.

4.1 Selecting a View

The artist controls the current view using the view angle control,
shown in the lower-left of Figure 3. The view angle control is sim-
ply a 2D grid which parameterizes the angle space, discretized into
a lattice of clickable points. The viewpoints are discretized to make
it easier to return to previously specified key views, which are high-
lighted in red. The angle space is parameterized such that the hor-
izontal axis of the angle control grid corresponds to yaw (rotation
about the Y-axis), while the vertical axis corresponds to pitch (ro-
tation about the X-axis). See Figure 4 for an illustration of the
parameterized angle space. We have found that users are able to
grasp this mapping quickly once shown the locations of the front,
side, and top views.

4.2 Controlling Z-Ordering

In a traditional vector art interface, the Z-ordering of strokes can be
controlled by manually moving strokes forward and backward in a
global ordering. In a 2.5D model, no such global ordering exists,
as the Z-ordering changes depending on the viewing angle. In our
approach, once two or more views have been drawn for a stroke,
we are able to automatically calculate a 3D anchor position for the
stroke, and determine strokes’ Z-ordering based on their anchor po-
sitions. However, the artist may wish to override this suggested Z-
ordering in order to maintain high-quality renderings for all views.
To allow this, we provide the overlap tool.

The overlap tool allows the artist to specify a constraint on the rel-
ative Z-ordering of two strokes over a given range of views. The
artist places such a constraint by selecting two strokes, then click-
ing “Add > overlap region” or “Add < overlap region”, and fi-
nally drawing a polygon onto the view angle control. The polygon
defines the range of views for which the first seleced stroke must
either be above or below the second stroke, depending on which
button was clicked.

The artist may add arbitrarily many of these overlap constraints, and
can therefore completely control the Z-ordering in any view. For
example, if Z ordering A > B > C > D is desired in a given view,
the artist can enforce that A > B, B > C, and C > D using three
separate overlap constraints that include that view. In practice, the
Z-ordering based on strokes’ anchor positions is generally correct
for most strokes; usually only a small number of manually-specified
overlap constraints are necessary.

4.3 Visibility

We also provide a simple tool to allow the artist to manually specify
a stroke’s visibility for ranges of views. The visibility tool, simi-
lar to the overlap tool, allows the artist to draw a polygon directly
onto the view angle control to specify a range of views. The artist
may then specify that a particular stroke must be either visible or
invisible for that range of views. Strokes are visible everywhere
by default. With this tool, an artist can also create complementary
groups of strokes that represent the same part of the cartoon in dif-
ferent stylizations, such that only one group (one appearance) of
the part is visible in any one view. This may be useful for design-
ing heavily stylized shapes that must revert to simpler appearances
when viewed from oblique angles, as with the mouth in Figure 1.

4.4 Boolean Operations

Finally, an artist can also combine strokes using Boolean expres-
sions. For example, to make the tongue stroke lie “within” the
mouth stroke, the artist may first name each stroke, then select
the tongue and set its Boolean expression to be “tongue ∩ mouth”,
which results in the tongue stroke displaying the intersection of the
two strokes. Boolean operations are also useful in approximating
highly concave shapes by combining multiple simple shapes into a
single more complex one, as will be described in Section 6.

5 2.5D Interpolation

We will now describe in more detail how the 2.5D interpolation
described in Section 3 is achieved. We will also introduce an exten-
sion which greatly reduces the number of key views that must be
manually specified by an artist.

5.1 Shape Interpolation

A stroke’s shape (as independent from its position and Z-ordering)
in a novel view is determined by interpolating the nearest key views.
We do this by first placing all key views into a 2D parameterization
of the angle space, as in Figure 4. This gives us a set of 2D points
representing the defined key views. We then construct a Delaunay
triangulation of these points. A stroke’s shape in a new view is de-
termined by performing 2D shape interpolation across the vertices
of the Delaunay triangle which the parameterization of the view lies
inside. If there are no key points surrounding the given parameter-
ized orientation, we find the nearest point on the nearest triangle
edge and compute the shape at that orientation, although with the
aid of derived key views (described below) this rarely occurs.

5.2 Anchor Positions

Each stroke in the 2.5D model is anchored to a single 3D anchor
position which determines the stroke’s position and Z-ordering.
Where a stroke’s anchor point should lie can be determined by
considering the stroke’s position in its key views. Each key view
determines a 3D line passing through the center of the stroke in
the direction of the camera in that view, on which the stroke’s 3D
position ought to lie. While these lines typically do not intersect,
the ideal anchor point is one that minimizes the distance to each of
these lines. We use a simple algorithm to approximate this: we start
by initializing the anchor point to the origin, and iteratively move
it to the average of the point’s projections onto all of the 3D lines
defined by the stroke’s key views. We repeat this until the anchor
point converges to a stable position.

Occasionally, a stroke’s position will change across different views
in a way that does not correspond to any real 3D position. For
example, Bugs Bunny’s ears always face the camera from any view.
With such shapes, trying to match a 3D position to a stroke can be
counter-productive. We therefore allow each stroke to optionally
have no associated anchor position, in which case it is rendered
based on simple 2D interpolation across its key views.

Grouping: Sometimes, several strokes in a cartoon together spec-
ify a single part of the object which must stay together as the camera
rotates (e.g., the pupil and eye). If each stroke has its own anchor
point, strokes which are drawn close together in every key view may
nonetheless drift apart between them. To address this, we allow the
user to join a selection of strokes into a group. A set of grouped
strokes move relative to a single 3D anchor point, which is simply
the average of the anchor points of each of the component strokes.

5.3 Derived Key Views

We can leverage symmetries to reduce the number of key views that
must be manually drawn by the artist. To illustrate, consider the sil-
houettes of any object as viewed from the front and the back: the
two silhouettes are simply horizontal mirror images of each other.
Therefore, we can take a stroke’s appearance in the front view and
flip it to obtain its appearance in the back view. In general, we can
take any artist-specified key view for a stroke and flip it to generate
a derived key view for the reverse orientation. We insert these de-
rived key views into the set of key views automatically. This tactic
significantly reduces the number of key views that must be manu-
ally drawn by the artist. We show this type of derived key view in
green in Figure 4.

Note that derived key views for reverse orientations can be used
even if the cartoon as a whole is not a mirror image in a reversed
orientation, as this is typically caused by different Z-orderings in
the two views, and the Z-ordering of strokes is computed indepen-
dently of their shape. However, the artist may wish to turn off this
type of derived key views for strokes which have inconsistent ap-
pearances across different views, such as the mouth in Figure 1.

We also note that there exist redundancies in the way we param-
eterize the orientation space: all views for which pitch = ±π/2
are in fact identical views, just rotated in image space. Therefore,
when the artist specifies any key view for which pitch = ±π/2,
we automatically obtain derived key views for all other points in
the view angle grid for the same pitch value by rotating the given
view. This effect could also be achieved by parameterizing the ori-
entation space on a sphere; we chose our current approach as it is
easier to implement and allows us to display the orientation space
in the interface as a simple 2D map.

Finally, if a stroke is entirely symmetric about the vertical axis, we
can simply mirror views of the stroke facing right (yaw > 0) to
obtain views of the stroke facing left (yaw < 0). This also works
well for stylized shapes that the artist wishes to “pop” from one
orientation to another; the mouth in Figure 1 is such a case.

6 Limitations

The nature of 2.5D cartoon models imposes limitations on the types
of shapes that can be represented. Because cartoons are composed
out of strokes that are treated mostly independently, it is difficult to
show interior contour or detail lines, as these are expected to merge
with shape silhouettes at some point in rotation, an operation we do
not support. In addition, shapes that are sharp or highly concave
may interpolate poorly at intermediate views. Overlapping strokes
can also suffer from undesired popping artifacts during rotation.

Sharp and highly concave shapes are the most difficult to repre-
sent as their contours change in complex ways during rotation that
cannot be approximated with linear 2D interpolation. This issue
can be addressed for some shapes by decomposing the shape into
two or more mostly convex shapes, and then using Boolean union
operations to combine them into what appears to be one stroke.
Highly concave shapes, however, cannot always be decomposed in
this fashion. Unfortunately, shapes intended as textures on the sur-
face of a shape are especially difficult to interpolate, as they are
essentially very thin concave shells. Hair is a difficult case for our
system as it generally falls over the head in a way that forms a con-
cave shell. Highly concave shapes also suffer from the limitation
that we do not support partial occlusion, as with a piece of clothing
wrapped around a body. These limitations can only be ameliorated
by drawing in more key views.

Popping artifacts arise when the artist draws two shapes that over-

(a) (b) (c)

Figure 5: Failure case: Although the hair stroke’s two key views
(a) and (c) are reasonable, the interpolated view (b) generates an
implausible appearance. This is due to the shape’s outline not being
well approximated by linear 2D interpolation. In addition, the hair
in reality undergoes partial occlusion by the head, which we do not
model.

lap at the moment their relative Z-ordering changes. While a certain
amount of popping is actually expected in 2D cartoons, unintended
popping artifacts can be distracting. However, only shapes that in-
terpenetrate (in a 3D conception of the shapes) should have outlines
that overlap at the moment that their relative Z-ordering changes.
Popping can therefore be reduced by redrawing the strokes as non-
interpenetrating shapes, so they do not overlap, or overlap as little
as possible, in the views where Z-ordering changes. We wish to
investigate automatic solutions to this issue in future work.

In Figure 5 we show a failure case which one stroke, the hair, in-
terpolates poorly. Although both key views of the hair stroke are
reasonable, an implausible shape is generated at an intermediate
view. This is both because the shape is highly concave, and be-
cause it is partially occluded behind the head. In reality, as the head
rotates, part of the hair should disappear behind the head, while
other parts rotate into view. This could potentially be addressed
with a more complex algorithm for shape interpolation and a model
of Z-ordering that supported partial occlusion. To model this shape
in our current implementation would require either a high number
of key views or a decomposition into many sub-parts.

7 Results

In Figure 6, we show a number of cartoons created with our ap-
proach, showing top, front, and side key views, and one novel in-
terpolated view. The great majority of strokes in these models were
specified in either just those three views or those three plus one
additional view. We give statistics in Table 1. Nonetheless, this
was enough information to allow the cartoons to be rendered in any
view. Rendering itself, due to the simple nature of the calculations,
is far faster than real time. Please refer to our accompanying video
to see these models being rotated in 3D, as well as an example of
an animated 2.5D model.

8 Conclusion

We presented a new approach to non-photorealistic rendering in
which 2D vector art drawings of a cartoon in different views are
used to construct a 2.5D cartoon model which can render the car-
toon in any angle. We described additional tools that allow the
artist to fine-tune the Z-ordering and visibility of strokes in differ-
ent views. We presented several models in our results section that
confirm that this approach can be used to render cartoons in a way
that appears hand-drawn, even from novel views.

As can be seen in Figure 6 and in our accompanying video,
2.5D cartoon models are capable of rendering organic, stylized
shapes such as faces, which can be difficult to render non-
photorealistically. 2.5D models also support a wide range of styl-

(a) The Professor (b) Face

(c) Alien

(d) Dog

Figure 6: Results: For each 2.5D model, we show three key views , a rendering of the 3D structure of the 2.5D model, and an interpolated
view. Most strokes were drawn in just these three views or these three plus one additional view – see Table 1 for statistics.

Model # Strokes
Avg. # Key Views
per Stroke

Overlap
Constraints

Professor 28 3.8 17
Face 18 3.6 18
Alien 32 3.125 9
Dog 14 3.2 5

Table 1: Model statistics.

ized 2D drawing effects that do not reflect any real 3D shape,
and therefore cannot be modeled directly with 3D mesh-based ap-
proaches, but which nonetheless play an important role in the lan-
guage of 2D cartooning.

Animation, which is difficult in 3D, is much simpler in 2D. Fa-
cial animation, for example, has a well-developed set of styles and
methods in the realm of 2D cartooning, which are difficult to trans-
late to a 3D model. With 2.5D cartoons, these methods and styles
can be used naturally, as an animator’s desired appearance for a car-
toon in a given frame can be drawn in directly, without having to
consider what 3D shape would produce the same effect.

We believe that this type of cartoon rendering has a wide range of
applications, including in interactive entertainment, animation, and
rendering on non-3D-accelerated platforms such as cell phones and
Flash applications. The ease of drawing in 2D also makes it suitable
for use by non-professional users.

9 Acknowledgments

Luis Blackaller contributed much of the artwork used in this paper.
Thanks to the reviewers of the MIT pre-deadline and the members
of the MIT and University of Tokyo graphics groups. This work
was supported by funding from the MathWorks Fellowship.

References

ALEXA, M., COHEN-OR, D., AND LEVIN, D. 2000. As-rigid-
as-possible shape interpolation. Proceedings of the 27th annual
conference on Computer graphics and interactive techniques -
SIGGRAPH ’00, 157–164.

BLAIR, P. 1994. Cartoon Animation. Walter Foster.

BOURGUIGNON, D., CANI, M.-P., AND DRETTAKIS, G. 2001.
Drawing for Illustration and Annotation in 3D. Computer
Graphics Forum 20, 3 (September), 114–123.

DECAUDIN, P., 1996. Cartoon Looking Rendering of 3D Scenes.

EISEMANN, E., PARIS, S., AND DURAND, F. 2009. A visibil-
ity algorithm for converting 3D meshes into editable 2D vector
graphics. ACM Transactions on Graphics (TOG) 28, 3.

FIORE, F. D., SCHAEKEN, P., ELENS, K., AND REETH, F. V.,
2001. Automatic In-betweening in Computer Assisted Anima-
tion by Exploiting 2.5D Modelling Techniques.

GINGOLD, Y., IGARASHI, T., AND ZORIN, D. 2009. Struc-
tured annotations for 2D-to-3D modeling. ACM Transactions
on Graphics (TOG) 28, 5, –18.

GOOCH, B., AND GOOCH, A. 2001. Non-Photorealistic Render-
ing. AK Peters Ltd.

HSU, S. C., AND LEE, I. H. H. 1994. Drawing and animation
using skeletal strokes. International Conference on Computer
Graphics and Interactive Techniques.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
A Sketching Interface for 3D Freeform Design. International
Conference on Computer Graphics and Interactive Techniques.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. Spa-
tial keyframing for performance-driven animation. Symposium
on Computer Animation.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005.
As-rigid-as-possible shape manipulation. ACM Transactions on
Graphics (TOG) 24, 3.

JOHNSTON, O., AND THOMAS, F. 1981. The Illusion of Life.
Abbeville Press.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI,
M. A., LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES,
J. F., AND FINKELSTEIN, A. 2002. WYSIWYG NPR: drawing
strokes directly on 3D models. ACM Transactions on Graphics
21, 3 (July).

KOWALSKI, M. A., MARKOSIAN, L., NORTHRUP, J. D., BOUR-
DEV, L., BARZEL, R., HOLDEN, L. S., AND HUGHES, J. F.
1999. Art-based rendering of fur, grass, and trees. International
Conference on Computer Graphics and Interactive Techniques.

MCCANN, J., AND POLLARD, N. 2009. Local layering. Interna-
tional Conference on Computer Graphics and Interactive Tech-
niques 28, 3.

NEALEN, A., IGARASHI, T., SORKINE, O., AND ALEXA, M.
2007. FiberMesh:designing freeform surfaces with 3D curves.
ACM Transactions on Graphics (TOG) 26, 3.

NGO, T., CUTRELL, D., DANA, J., DONALD, B., LOEB, L., AND
ZHU, S. 2000. Accessible animation and customizable graphics
via simplicial configuration modeling. International Conference
on Computer Graphics and Interactive Techniques.

NORTHRUP, J. D., AND MARKOSIAN, L. 2000. Artistic silhou-
ettes:a hybrid approach. Non-Photorealistic Animation and Ren-
dering.

RADEMACHER, P. 1999. View-dependent geometry. International
Conference on Computer Graphics and Interactive Techniques.

SEDERBERG, T. W., AND GREENWOOD, E. 1992. A physically
based approach to 2D shape blending. International Conference
on Computer Graphics and Interactive Techniques.

SEITZ, S. M., AND DYER, C. R. 1996. View morphing. Proceed-
ings of the 23rd annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’96, 21–30.

SÝKORA, D., SEDLÁČEK, D., JINCHAO, S., DINGLIANA, J.,
AND COLLINS, S. 2010. Adding Depth to Cartoons Using
Sparse Depth (In)equalities. Computer Graphics Forum 29, 2.

YONEZAWA, K., TAKAHASHI, S., AND SHIBAYAMA, E. 2004.
SilF: a sketching tool for cartoon-like pseudo-3D illustrations
based on 3D outlines. International Conference on Computer
Graphics and Interactive Techniques.

ZELEZNIK, R. C., HERNDON, K. P., AND HUGHES, J. F. 1996.
SKETCH: An Interface for Sketching 3D Scenes. International
Conference on Computer Graphics and Interactive Techniques.

